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Can Robots Improvise? 
 

Gunter Lösel  
 

 
 
 
The idea of improvising robots might seem a strange subject, a bit of a joke. Isn’t 
robot-like behavior the exact opposite of improvisation? Improvisers obviously 
tend to think so, and being an improviser myself, I certainly don’t want impro-
visers to be replaced by robots – a notion that would fit the tradition of Edward 
Gordon Craig, who claimed the stage for the ‘Über-Marionette’ (Craig, 1911). 
But I do think that we can learn something about improvisation by trying to 
simulate it within machines. In what follows I will apply a paradigm of cognitive 
psychology: If we can simulate a mental process in a computer, we might get 
insights into cognitive processes that are hard to get another way because they 
are happening somewhere in the ‘black box’ of our minds. In this paradigm, 
computation is a kind of research, not so much in terms of technical innovation, 
but in terms of modeling. The question is: If we succeed in constructing impro-
vising robots, what does this teach us about the cognitive processes of improvi-
sation in humans?  

Methodologically three steps have to be taken. Firstly the phenomena and 
domain knowledge of improvisation must be described and systematized, begin-
ning with the description of phenomena and the specific language of improvis-
ers. In a second step one must translate the findings into the language of cogni-
tive psychology, which might enable us, in a third step, to translate the rules into 
algorithms; a formalized, mathematical language that can generate computer- or 
robot-behavior. The approach can be sketched like this: 
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Fig. 1: Translation into a formalized language 
 

Eventually, if we succeed in generating improvising agents, we can compare 
their ‘improvised’ behavior to improvisations performed by humans. This can be 
seen as a way to validate the model, but also to specify differences, that will in-
form us about human and robotic possibilities and limitations.  
 

 
Fig. 2: Validation of Concepts 

 
It is important to note that this kind of research can lead to false positives: A 

simulation might be able to produce phenomena that look like improvisation but, 
when analyzed more closely, are not. Still, this seems a promising way of gaining 
insight into the process of improvisation. There are a couple of existing explora-
tions in the field, including the actual construction of an improvising robot. In 
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the past decades musicians and computer developers have designed and con-
structed improvising musical automata, starting with Voyager in 1977 (Lewis, 
1999) up to Shimon (Weinberg, Godfrey, Rae, & Rhodes, 2007), an improvising 
robot marimba player, that I will describe further down. In improvised dance 
and improvisational theater corresponding research has started much later and 
with less impressive results, presumably due to the fact that (1) dance involves a 
body that requires advanced technological effort and (2) theatrical signs such as 
language, social schemas, bodily expression and so on are much harder to trans-
late into a code than musical signs. Up to this point there are no improvising 
robot actors and dancers in sight. 

To teach improvisation to machines is challenging, given the fact that simp-
ly applying rules will not guarantee a successful improvisation – neither in a 
human nor in an automatic player. The machine has to have some degree of au-
tonomy, so apart from implementing rules for improvisation the digital agent or 
robot must have some built-in module that facilitates non-deterministic, surpris-
ing, maybe creative, maybe aesthetic decisions. In what follows I will describe 
and discuss these contributions, speculating about the question of how far we 
are away from improvising robots, what features are necessary to build them 
and what this tells us about the human capacity to improvise.  

 
1. Cognition and Improvisation 

 
There have been several approaches to cognition in improvisation, using linguis-
tic analysis (Sawyer, 2003) phenomenological explorations (Benson, 2003), 
analysis of domain knowledge (Lösel, 2013), systems theory (Borgo & Goguen, 
2007) and Daniel Kahnemann’s categories of system 1 and system 2 cognition 
(Drinko, 2013). Here I am using Magerko et al.’s approach as a starting point 
because it connects directly to computing. Brian Magerko, Waleed Manzoul, 
Mark Riedl, Allan Baumer, Daniel Fuller, Kurt Luther, and Celia Pearce (2009) 
conducted a study on the cognition of improvising actors at the Georgia Institute 
of Technology. The paper, An Empirical Study of Cognition and Theatrical Improvisa-
tion, presents the authors’ view of improvisation as a process of problem-solving. 
They explore what improvisers conceive as the ‘problem of the scene’ and what 
they do to solve it by using video-cued-recall: Experienced improvisers were 
asked to improvise in a laboratory-situation, while the material was video-
recorded. After the performances, the participants were shown their scenes 
again and asked to make comments about what they were thinking at specific 
points in the performance. This method has limitations; it can only uncover what 
the improvisers consciously experience and what they can verbalize. Neverthe-
less, it is probably one of the best current methods of “looking inside the heads” 
of improvisers. 
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The authors identified 4 categories of cognitive processing in improvisation: 
 
(1) Basic Cognition,  
(2) Shared Mental Models,  
(3) Narrative Development  
(4) Referent Use. 
 

(1) Basic Cognition.  
 
The authors found that improvisers engage in cognitive processes – such as in-
ference, schema generation, mental imagery, theory of mind, and decision-
making – while performing a scene. One crucial point of improvisation is that 
actors have very little information about the scene, so the input has to be some-
how enriched and completed using cognitive strategies. Improvisers would fre-
quently report inferring information about the scene from another improviser’s 
actions, specifically about the scene’s location and the improviser’s goals and 
knowledge in the scene. For example, the following inference occurred early in a 
game of Party Quirks. Improviser D1, watching the party host, D2, set up the 
scene, described the following:  

 
…and then I thought, ‘Who is he trying to be?’ Like ‘is he having a house par-
ty or is he a college guy? Are we in the middle of the forest?’ I mean I’m try-
ing to picture where he is setting his party and who his character is. I thought 
eventually because there was a door [the host pantomimed opening a door], 
well, we have to be inside then. We have to be in someone’s house. (Magerko 
et al., 2009, 121) 

 
The authors highlight two strategies as of specific importance: (1) The improvis-
ers reflected upon the ‘reality of the scene’, thus excluding many options. To do 
this, they not only had to memorize the established elements of the scene, but 
also find out what kind of world they were in and do this within a creative act of 
constructing a world-model out of elements that they were given explicitly. In a 
second step they would have to adjust this fictional world to the concepts of a 
partner. I will refer to this process again in the next section. (2) Improvisers 
were looking for the game of the scene’ – in accordance with the Chicago-
improvisation-style. The concept has evolved from Viola Spolin’s work, starting 
in the 1930s in Chicago, but has grown into a more sophisticated concept. While 
in Spolin’s work, games have a clear setting and well-defined rules (Spolin, 
1977), in the concurrent Chicago school games emerge during the scene without 
a clear setting or rules; actors have no time to explicitly agree upon rules. In-
stead, they are taught to ‘Find the game’ (or ‘Listen to the game’) (Halpern, 
Close, & Johnson, 1994). Any interaction can be turned into a game. In a game 
the participants have interdependent objectives – usually in an antagonistic way: 



Gunter Lösel                                                             Can Robots Improvise?	

	 189 

The closer A gets to his or her objective, the more distanced B will be towards 
his or her objective and the other way around. For example when two charac-
ters are both trying to sit in the same chair they will inevitably have interde-
pendent objectives and start a game. This can take the shape of a conflict, but 
improvisers are taught not to rely on conflict too much in order to be open to 
any type of game that might emerge. Usually a game appears within the first five 
stage actions. It should not be constructed or forced upon the fellow players, but 
should emerge ‘by itself’. Once found, the game can be heightened until a maxi-
mum is reached (usually after three rounds, with every round taking things to a 
new extreme). The scene ends when the game ends. 

How would a computer detect a game and participate in the game of a sce-
ne? First it would have to be able to detect numerous social schemes. This seems 
very ambitious today, but since computers are very good at pattern-detection in 
general, it might only be a matter of technical advancement. The second claim is 
presumably much harder: The computer would have to build up some kind of 
intention – and do this without being programmed for a specific intention (like 
‘Win the chess game’). So here computation hits a hard obstacle. While poten-
tially being able to identify the emerging rules of a game, engaging in the emerg-
ing objective is not a computer’s core competence since it is lacking intentionali-
ty. Here the difference between a pattern and a game becomes evident: A pattern 
can easily be detected and completed by a computer since it does not involve 
intention, but a game is more than a pattern. It involves intentions in order to 
build up expectations in order to participate in the interaction of the game.  
 
Intentionality 
 
This point seems crucial, since intentionality is one of the strongholds of human-
ism. We generally hesitate to ascribe intentions to computers – but in the case of 
games, doubts come up: Firstly the intentionality within a game might be very 
different from intentionality in general: A chess player does not really want to 
destroy an army, a card player does not really desire to possess as many cards as 
possible and a monopoly player does not really want to invest in hotels. Instead, 
humans seem to have the ability to engage in a kind of fictional intentionality 
that appears and ends with the game. Indeed,  in many games the objective is 
simply predefined by the game builder and can be found in the instructions, so 
in certain sense one can consider the objective to be part of the rules. These 
‘adopted objectives’ might be much easier to imitate for a computer than inten-
tions in real life. 

Secondly a computer can maybe circumvent this problem by processing an-
ticipations and expectations, and this might look very much like intention – it might 
only be a matter of definition if we call this intention or not. After all, our as-
sumption that all human beings possess something like freewill is just an as-
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sumption, more and more questioned by neuropsychology. Improvising comput-
ers work with something like a simulation of intentionality, one example being 
voyager, a pioneering software for improvised music. It uses specific algorithms 
for the representation of musical input and output, that try to mirror the emotional 
state of the human partner (Lewis, 1999). George Lewis calls this process ‘trans-
duction’ and emphasizes its importance for the interaction between machine and 
human: 

 
The transduction of musical intentionality into or from sound, or ‘emotional 
transduction’, is important to the construction of interactive work. This notion 
constructs physicality and performance as an intentional act, that is, an act 
embodying meaning, and announcing emotional and mental intention. (Lewis, 
1999, 9) 

 
Mirroring the partner and transforming the response may substitute intentionali-
ty – even though Lewis seems to suggest, that it is the human partner who con-
structs intentionality by imputing it to the computer and reacting as if the com-
puter were an intentional being.  

 
(2) Shared Mental Models  
 
Shared mental models consist of the common framework of knowledge (i.e. 
mental models) shared among the members of a group. In improvisation, shared 
mental models usually require effort to create. Sometimes the mental models of a 
group disagree, and cognitive divergence occurs (i.e. when improvisers have differ-
ent internal models about what is going on in a scene). These disagreements are 
resolved through cognitive convergence, which is the process of building towards a 
goal state of cognitive consensus (i.e. the agreement of assumptions). When cogni-
tive consensus is reached, mental models are shared among the group (at least 
partially).  

Three steps of cognitive convergence usually occur before cognitive con-
sensus is reached. First is observation, the point at which an improviser realizes 
that his mental model diverges from others’. Second is repair, which refers to all 
attempts to reconcile divergences. Repairs can either be attempted in order for 
an improviser to align himself with another improviser's mental model or in or-
der for an improviser to align another improviser with his own mental model. 
The third, and final, step of cognitive convergence is acceptance, during which 
cognitive consensus may occur. It is also possible that consensus may be rejected 
or that an improviser will achieve perceived cognitive consensus, where they 
think that they have achieved consensus, but actually have not. Finally, when 
two improvisers reach consensus, there is usually an explicit external acknowl-
edgment that they understand each other. The process of sharing mental models 
can thus be quite complicated and needs several feedback-loops to build up a 
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stable basis. A computer would hate to detect cognitive divergence and use cog-
nitive convergence to reach cognitive consensus with another computer or hu-
man partner. This requires enormous social knowledge, something psychologists 
refer to as theory of mind (TOM), the ability to take the other’s perspective by 
reconstructing it.  

For example in a game of chess both players will not only strive for the best 
move from their own perspective, but will try to predict, what the other player 
might have on his or her mind. In order to do so, he or she has to see the chess 
board from the other side and try to reconstruct the others way of thinking. This 
is more or less a cognitive task – while empathy is the emotional equivalent. For 
a computer this mastering TOM is ambitious, but not unthinkable, while empa-
thy will probably be beyond the scope of machines. Within a given and rather 
formalized game like chess computers have already gained dominance over hu-
mans, but generally taking the perspective of a human might be just as difficult 
as our taking the perspective of a machine. 

Still TOM might not be needed for improvisation. I even doubt that im-
provisation is about sharing mental models. Drawing from literature on improvi-
sation I would rather suggest that the process of building a fiction or pattern in 
improvisation can better be described as a process of constructing a social reality step 
by step, thus not allowing fixed mental models to emerge in the first place 
(Sawyer, 2003) Lösel, 2013). Consensus, I would argue, is not reached through 
convergence but through co-creation. This process might be easier for comput-
ers than achieving a TOM. 

 
(3) Narrative Developement 
 
Magerko et al. (2009) suggest a differentiation between events and existents of a 
story, but they fail to connect this to the specific language of improvisers. This 
might be due to their reference of the Chicago school only. The British-
Canadian school represented especially by Keith Johnstone has generated a 
multitude of rules for storytelling. For Johnstone storytelling is based on the 
performer’s ability to reconstruct and predict the audience’s expectations, proto-
typically trained in his famous game What Comes Next? (Johnstone, 1987). In 
this game an actor starts sitting on a chair in a neutral position and asking the 
audience ‘What comes next?’. He or she will only follow the suggestions of the 
spectators without adding any material, step by step building up scenes that are 
completely controlled by the audience’s expectations. Through this the impro-
viser learns to stay within the ‘circle of expectations’ and to fulfill them. Only 
when he or she has learned to sense, predict and follow these expectations the 
improviser will train breaking expectations. One can easily think of a computer 
playing the game of ‘What comes next?’, making suggestions for a scene and 
slowly building up the capacity to predict, what kind of story will please the 
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audience. From such a starting point the neuronal network could learn breaking 
expectations from time to time, for example by using some random generator. 
Improvisation as a dialogical form of art provides a rich environment for com-
puters to learn about humans. For this kind of storytelling almost no dramatur-
gical rules are necessary to begin with. Instead, patterns of storytelling will 
emerge through experience and a feedback-loop with the audience. I propose 
that we distinguish between two phases of improvisation, which I call game-
building and game breaking: In a phase of game-building expectations of the 
audience and fellow players are met, while in a phase of game-breaking expecta-
tions are broken (Lösel, 2013). 
 
(4) Referent Use and Domain Knowledge 
 
A key effect of improvisers’ training and experience is the use of referents; spe-
cific terms or language referring to the improvisational techniques. As with 
many of the performing arts, improvisation has built up an extensive vocabulary, 
a set of widely held core principles (e.g., accept an offer and build on it), and a 
long list of techniques and games used within scenes.  

Magerko et al. can show that improvisers use their specific language to de-
scribe the problems and choices in a scene. The language shapes what and how 
improvisers think about their improvising. It is both a tool for analyzing scenes 
and finding shared mental models. Examining the language of improvisation 
might be a direct way to understand the cognition of improvisation. This seems 
trivial, but has not been made evident: improvisers share similar concepts and 
rules; they have a common knowledge domain. While this study provides evi-
dence for the use of domain knowledge in post-performance analysis, this might 
not apply to the cognitive processes of improvisers while they are playing. I will 
discuss the role of domain knowledge further down. 
 
Modeling improvisation 
 
Magerko et al. suggest that improvisation can be modeled using a well-
established cognition model; the decision circle from Newell’s Unified Theory of 
Cognition (Newell, 1990). This model is linked to computing because it is con-
nected to a computational model called SOAR (State, Operator And Result), so 
it can be translated into coding rather directly. A visualization of SOAR can 
look like this: 



Gunter Lösel                                                             Can Robots Improvise?	

	 193 

 
 

Fig. 3: Visualization of a SOAR 
 

SOAR is an input/output concept with perception as input and action as output. 
Between input and output, working memory, recognition memory and produc-
tion-match work closely together to generate two learning circles: one, displayed 
at the top, is designated to proposing options. If none of the stored options fit, the 
problem and strategies have to be broken down into smaller pieces – sub goals – 
until new options can be generated. The other circle, displayed at the bottom, 
serves as a decision-maker, using past experiences from an episodic memory that 
continually feeds preferences and is updated with every new experience. 

SOAR uses production rules to generate states that gradually bring the sys-
tem closer to the goal state. The main link to the outside world is the working 
memory, which controls the input (perception) and the output (action), com-
pleting and evaluating the input and selecting the most promising action. It op-
erates on three structural levels that follow a sequence over time, but can be 
repeated as many times as necessary. Displayed in a temporal pattern, the 

Working Memory

Recognition 
Memory

Preferences

Production 
Match

Chunking

Perception

Action

Addition of new 
Chunks

Dependency 
Analysis/Trace

Addition of 
Preferences

Decide
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SOAR follows Newell’s decision circle from, which states that, whenever rea-
sonable, cognitive acts can be separated into five steps:  

 
1. Receiving input 
2. Elaboration of new knowledge based on other knowledge or inputs 
3. Proposal of new operators / actions / goals to pursue 
4. Selection of one of the proposed courses of action 
5. Execution of the selected action 
 
 

 
 

Fig. 4: Newell’s Unified Theory of Cognition 
 
Magerko et al. assume that this circle applies to improvisation in the same 

way as to other cognitive actions, but this assumption might be false. I propose 
that, when we apply the model to improvisation, major differences to the normal 
circle have to be considered and inserted. For improvisation, the normal decision 
circle seems to be the exception. Instead, the decision circle would look some-
thing like this: 

 

Evaluation of 
Input

Generating 
proposed Actions

Selecting one pre-
ferred action

Action
(Output)

Perception
(Input)
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Fig. 5: Newell’s model adapted to a mode of improvisation 

 
Improvisers are trained not to evaluate the input, but to greet every impulse 

with joy and acceptance. Making offers and accepting them is a central rule in 
improvisational theater, shared by both the Chicago and the British-Canadian 
school (Salinsky & Frances-White, 2008, 57). An offer can be accepted in many 
ways – either in the obvious content or in the subtext – which makes of-
fer/response much more complex than it first appears. The Chicago school 
coined the term the ‘Yes and-principle’, highlighting that accepting an offer and 
adding new information, and thus creating a new offer, are always connected 
and depend on each other. This principle guarantees that each player’s contribu-
tion is integrated into a chain of communication that builds up a fictional reality: 
‘The whole point of the Yes And game is to build a chain of ideas, each linked to 
the previous one.’ (Salinsky and Frances-White 2008, 59). It is not enough to 
soberly accept an offer, it should be accepted emotionally, enthusiastically, and 
meaningfully (Halpern, Close, & Johnson, 1994, 45-46) (Salinsky and Frances-
White 2008, 94) (Johnstone 1999, 101-129). As any form of judgment will harm 
the collaborative relationship and responsiveness between the stage partners, 
improvising actors find ways to circumvent the process of input evaluation. 
While this is common ground for improvisation in theater, it might not hold true 
for music and dance, since they don’t rely on a fictional reality as much as thea-
ter. 

No Evaluation and 
Elaboration

Generating 
proposed Actions: 
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 or Filter 2

Action
(Output)
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(Input)
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Improvisation certainly needs to go beyond affirmative action or the ‘Yes-
and-priciple’, it has to stimulate an oscillation between affirmative and non-
affirmative: While in a phase game-building the improviser is bound to stay in-
side the circle of expectations, in a phase of game-breaking the opposite is need-
ed, strong, unpredictable, spontaneous action without any consideration of ex-
pectations. The selection of outputs thus differs in relation to the phase of im-
provisation, which means that two different strategies or codes for selection 
must exist:  

 
Phase of Improvisation Selection code  
Game-Building Filter 1 “Stay inside the circle of expec-

tations” 
(Don’t try to be original, don’t make 
jokes, be obvious) 

Game-Breaking Filter 2 “Stay outside the circle of ex-
pectations” 
(Don’t be afraid of spontaneous ideas, 
psychotic or obscene ideas) 

  
Table 1: Selection codes for different phases of improvisation 

 
 

In terms of cognitive psychology one might draw parallels to the dichotomy of 
convergent versus divergent cognition. 

Could computers simulate the decision circle of improvisation? Actually 
this seems easier than simulating the standard decision circle, because no evalua-
tion of input (which would involve some kind of episodic memory) is needed, 
nor is there a complicated code for the selection of output (which would call for 
domain knowledge). But there is still an obstacle: the computer or digital agent 
or robot would have to learn to predict human expectations. As sketched out 
above, this might be possible, using machine learning in a specific setting like 
‘What comes next?’. In other words, computers don not need to build up a com-
plete representation of human cognition, but might be able to interact and learn 
as soon as they master predictive processing. 

There is a general assumption behind this model: Improvisation is seen as a 
process of decision-making and/or problem solving. But a problem-solving pro-
cess has to contain a mechanism for comparing the outcome of a process with 
the anticipated result, and in improvisation one might argue that there is no antic-
ipated result. On the contrary, fulfilling a plan is exactly the opposite of improvi-
sation. Also it seems that improvisation techniques are, to a certain extent, dedi-
cated to creating problems instead of solving them. In the next section I will 
therefore explore the explanatory potential of a cognitive model that lately has 
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been called predictive processing’ (Clark, 2016), which focuses on the cognitive 
ability to anticipate.  

2. Improvising Machines 
 

Yoichiro Endo’s (2008) dissertation at the Georgia Institute of Technology and 
strives for an even more formalized language to describe improvisation in order 
to construct robots. It attempts to build a computational framework and archi-
tecture that allows robots to act proactively in unpredictable situations. It draws 
heavily on cognitive studies, especially the Damasio’s theory of embodied cogni-
tion, and neuroscience. Endo defines improvisation as a process to quickly gen-
erate solutions without having sufficient information.  He then discusses the rela-
tionship between anticipation and improvisation:  

 
Anticipation here means that the robot can assess the current situation, pre-
dict the future consequence of the situation, and execute an action to have de-
sired outcome based on the determined assessment and prediction. On the 
other hand, improvisation is performed when the consequence of the situation 
is not fully known. (2008, xxvi) 
 
Anticipation is a way of predicting the future by simulating it, usually using 

large amounts of information. Improvisation, on the other hand, for Endo is 
something like an antagonistic concept that comes to action when anticipation 
fails. Improvisation is thus important for a robot because it enables the robot to 
solve a time-sensitive problem without complete knowledge of the situation. 
Current systems including the SOAR have a problem with fragmentary infor-
mation. They will come to a screeching halt when there is not enough input to 
come up with a proposal for an action. Because of this, a digital agent, or robot, 
will behave exactly as a beginner improviser on stage; freeze and do nothing in 
order to minimize the risk of failing until there is enough information.  

 
Anticipation and Predictive Processing 
 
Endo sees improvisation as a cognitive mode to deal with situations where antic-
ipation fails – either because there is not enough information, there is not 
enough processing time, or the situation seems to fall under the Markov assump-
tion. He refers to Philip Agre’s (1988) early contribution to Artificial Intelli-
gence at the Massachusetts Institute for Technology. Agre’s starting point is that 
improvisation is performed when the consequences of actions are not necessarily 
fully known and the time for data-processing is very limited. Under these cir-
cumstances, artificial intelligence has to avoid exhaustive computation. Agre 
relates this to anytime algorithms, in which a solution to a problem is considered 
in an incremental fashion. Anytime algorithms are constructed so that the quali-
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ty of a solution improves monotonically with respect to the amount of time spent 
for computation. The computation can thus be interrupted anytime, yielding the 
solution attained within the given the time constraint. In this view improvisation 
would be linked to promptness, when time is too short for complete processing. 
This would certainly make sense from a biological perspective; a fast and imper-
fect reaction might in many cases be better than no reaction at all. From an im-
proviser’s perspective this supports the notion of embracing the imperfect and 
trying to avoid evaluation. Every idea is good, so the brain doesn’t have to waste 
time finding the ‘best’ solution. This corresponds to the notion of following the 
first idea described above. Anytime algorithms correlate to what psychologists 
call heuristics. When there is insufficient information, the brain will draw on 
heuristics that allow for some probability of success. ‘Chunking’ is, then, a form 
of generating heuristics that allows for fast, imperfect responses. This is also in 
accord with Drinko’s suggestion to conveive the improvisational mode of cogni-
tion as related to Kahnemann’s system 1 (Drinko, 2013). 

Endo’s computational model uses an interesting technique for chunking. 
When episodic memory does not contribute to the solution for the new situation, 
the memory is converted into a more abstract form, which can then potentially 
serve as a base for a new answer. So, when anticipation fails and episodic 
memory cannot provide possible solutions, episodic memory is transcoded into 
more abstract data – resembling feelings or intuition, like a feeling of danger or a 
quality of movement – instead of a specific memory. This shifts the focus away 
from the contents of memory to the coding of memory. New options spring from 
transcoding experience into abstract forms. This solution certainly resembles to 
processes of improvisation. The proposal of new actions does not come from 
memory in a specific form, but in a very abstract form that is potentially beyond 
conscious control. 

What Endo sketches fits well into neuropsychological concepts of seeing 
the brain as mainly designed for predictive processing continually, trying to 
predict the near future by actively projecting possible futures. Predictions are 
generated on every level of a multilevel system of processing. Only if prediction 
(or, in Endo’s words anticipation) fails, will the higher levels of the system be 
activated, providing a new prediction involving higher – and more abstract – 
levels of coding and processing. This is also in accord with phenomenological 
approaches in the tradition of Edmund Husserl, who found that the experience 
of time is not only shaped by presence but also through a couple of seconds of 
past – which he calls retentio – and a short period of future – referred to as proten-
tio (Husserl, 1964). According to the jazz-improviser and researcher David Bor-
go the automatic, unconscious prediction of the near future (=protentio), can be 
seen as the key for the analysis of free jazz with its mutual transitions and com-
plex patterns (Borgo & Goguen, 2007).  
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Embodiment and Environment 
 
In a wide improvisation is not an isolated cognitive process, it is embedded in 
the environments of the body and the surrounding situation, like the other im-
provisers, the stage, the audience and so on. It has to be conceptualized as a 
form of communication and dialogue. Prototypical for this is Shimon, probably 
the most advanced development in robotic musicianship (Hoffman & Weinberg, 
2011). Shimon is a interactive robotic marimba player, that is working on a hy-
brid model. He uses domain knowledge of jazz musicians about standard chord 
progressions and beats, plus random inputs, generating patterns (Weinberg et 
al., 2007). While the development started with a classic cognitive approach to 
problem solving, the aspects of interactivity and embodiment became more and 
more important over the years Shimon was in development. Shimon has learned 
to listen to a human musician and continuously adapt its improvisation and cho-
reography, while playing simultaneously with the human. He can identify ges-
tures and build an improvisation on a gesture – a physical behavior – and play 
along with a human interaction partner in a call-and-response mode. 

There are three modules involved.  
1. The Phrase-call and chord-response module will detect the beat and the ges-

tures of a human player and anticipate the next beats and phrases. It will also 
synchronize beat and chords and execute a sequence of simple and rhythmic 
chords. Thus, the robot tunes in with the chord sequence, just like a human mu-
sician. 

2. The Opportunistic overlay improvisation module, draws on the bass-notes of 
the human player, tracking the beat and down beat. The robot will detect ges-
tures, simulating the physical behavior a human would perform when playing 
the bass. This results in a dynamically changing confluence of two rhythms and 
one chord structure plus a choreografic element drawn from gesture detection. 

3. The Rhythmic phrase-matching improvisation module will “listen” to the hu-
man players last beats and answer it with a phrase that oscillates between being 
very close to, or far away from, the human input. It clusters the input and ran-
dom probabilities vary the degree of matching. This ‘decay parameter’ will de-
termine the degree to which a robot will simply copy versus adding material that 
comes from somewhere else. The mechanism avoids copying completely. When 
the robot is adding material, it draws on previous human plays; the robot is us-
ing its episodic memory. 

Improvising robots need to somehow (1) detect patterns like chord se-
quence, beats and baselines, or, in the case of theater, social schemas and/or 
games (2) create an output that can be understood by the human partner (3) 
decide, when to do the one or the other, defining phases of listening (pattern 
detection) and action (adding to the detected pattern). In this way chains of call-
and-response cycles can evolve into complex, dynamical structures that facilitate 
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the emergence of new material. The human player has to ‘get the system’s atten-
tion’ (Lewis, 1999), Shimon has to detect the relevant patterns, and then decide 
to ‘play along’ (game-building) or go beyond expectations (game-breaking). 
This might not be creative in a strict sense, but does appear as responsive and 
spontaneous behavior and it is apt to inspire creative behaviour in the human 
partner. Responsivity and embodiment have already become reality in Shimon 
who, interestingly, is copying human behavior, including bodily restrictions in 
order to obtain results that humans can understand.  

 
Creation, Chance and Emergence 
 
In the discourse about creativity in machines, improvisation might add interest-
ing points, because it is a form of creative processing that can do without com-
plex planning, defining rules and environments that function on the base of sim-
ple rules but still generate complex, new and even artistic outputs. Johnson-
Laird, being both a scientist and a jazz musician, was the first to apply this logic 
to improvisation (Johnson-Laird, 1989). According to him, only three types of 
algorithms can truly facilitate improvisation: neo-Darwinian, neo-Lamarckian, 
and a hybrid of the two. A neo-Darwinian algorithm generates a new piece by 
randomly blending different pieces together and thus generating a large number of 
options. Selection is then left to the environment, which, in the case of collective 
improvisation, are basically the other improvisers.  If an idea is picked up by 
them, it will evolve, otherwise it will disappear. In a neo-Lamarckian algorithm, 
on the other hand, a new piece is derived from some relevant domain 
knowledge, which leads to more elaborated improvised outcomes that hardly 
require selection, because this is already in the decision circle within the individ-
ual improviser. The neo-Darwinian model applies a bottom-up concept, while 
the neo-Lamarckian model uses a top-down model. The third type, a hybrid, 
combines both top-down and bottom-up processes. Johnson-Laird noted that, 
even though the neo-Darwinian approach is fated to produce a substantial 
amount of unwanted pieces due to the randomness in the production process, it 
might be the only way one can improvise when no expert knowledge is availa-
ble. On the other hand, the neo-Lamarckian approach produces a new piece by 
drawing on expert knowledge available to guide the production. 

A related concept is the theory of social emergence, elaborated and applied 
to improvisation by Keith Sawyer (Sawyer, 2003). In this concept, the new ma-
terial emerges through complex, dynamic interaction of elements on a microlevel 
of the improvising system. This material is unpredictable in detail, but has a 
certain probability to emerge within an ‘interactional frame’, that contains of 
material that has emerged before and has been marked as part of the shared 
world by being accepted by the fellow players. Emerging material thus will be 
confirmed and validated by the system – the improvising group. Only when 
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somebody has said ‘Yes’, will the material become part of the frame for the fol-
lowing improvisation. The interactional frame provides a code for the selection 
of emerging options and is emergent itself. Sawyer’s model implies both top-do and 
bottom-up relations. 

I suggest summarizing these concepts under the term ‘quasi-evolutionary 
models for improvisation’. Shimon incorporates both neo-Lamarckian and neo-
Darwinian aspects and presumably improvisation needs both the uncensored 
production of random material and the elaboration of options with a high degree 
of domain knowledge. The neo-Lamarckian concept can apply for the phases of 
game-building: Domain knowledge, the specific language of improvisation and 
the rules of improvisation can be implemented in a robot (or taught to a human 
improviser). For the phases of game breaking the neo-Darwinian concept is 
more apt, since it produces surprising, unpredictable material. Quasi-
evolutionary models focus on two processes: 1. How does new material appear 
(mutation)? 2. How is the selection organized (selection)?  

 
1. How does new material emerge (mutation)? 
 
As the works of Magerko et.al, Endo and Weinberg et al. suggest, there are 
several ways for a machine to generate new, surprising material: 

Random generator: A computer can introduce unpredictable material by us-
ing a random generator or a pseudo random generator. In this aspect a computer 
is much more capable than a human, who depends on the associative structures 
of the brain, which are not quite unpredictable. Humans can generate divergent 
ideas, but this is not the same as random generation. A computer is free in select-
ing far-out ideas with no connection to previous input. 

Reduce to abstract: Computers can transform the input/output by transcoding 
it into a more abstract form, like vectors or some kind of simulated somatic 
markers, which can resemble intuition, emotion, gesture. These structures imi-
tate and strongly resemble neuronal structures of predictive processing. 

Decay: Another form of coming up with new material is the concept of “de-
caying”, which means that mistakes are introduced within the system by using 
fuzziness in pattern detection, option generation and/ or option selection. 
Through iterative circles of re-introducing mistakes, new material will emerge. 

Emergence: In literature one can find another mechanism for generating new 
material, that draws from the theory of complex dynamical systems. In such 
systems, new material emerges from unpredictable events on a microlevel ampli-
fied through complex dynamics that lead to emergent phenomena on a mac-
rolevel (Sawyer, 2003) (Borgo & Goguen, 2007) (Lösel, 2013).  

The fine line between chance and emergence could make the difference be-
tween behaviour that simply mimicks improvisation and truly improvised behav-
iour. While this concept is very convincing, there is no actual application in digi-
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tal agents or robots yet. In order to produce emergent phenomena computers 
would have to become complex systems and at the moment nobody seems to be 
able to tell, when this will be the case. Or if it is even possible at all. 

 
2. How is the selection organized (selection)?  
 
The selection of options is a crucial point. In a neo-Lamarckian model the selec-
tion is appointed to the individual, who, drawing on domain knowledge, will 
come up with some reasonably good output as outlined above. In a neo-
Darwinian model, the selection is left to the environment of collaborating im-
provisers. For this, the environment has to have certain qualities to mark select-
ed options and provide their survival, while eliminating options that were not 
selected. On the environmental level both the computer and the human partner 
must be able to confirm aspects of the partner’s output, thus generating some 
common ground (or an interactional frame, or a circle of expectations) and high-
lighting the aspects selected in order to build up a response. So the improvising 
computer needs mechanisms to perceive, select and confirm options provided by 
the human partner. It is important to note that there is no universal code for the 
selection of options, instead it varies with the specific system or environment 
with its own emerging codes. In other words: What survives in one improvisa-
tion might not survive in the next. The improviser has to find out every single 
time. Unpredictability is a desired feature of the improvisational environment 
and, according to the theory of dynamical systems, it can be reached through 
high complexity. The ideal improvisational environment will never be complete-
ly predictable, but it will also never be completely unpredictable. It will oscillate 
between these poles. 
 
Conclusions 
 
In this article I followed previous attempts to conceptualize and build improvis-
ing machines. As sketched out in the beginning I will now follow the reverse 
path, asking the question of what improvising automata might tell us about hu-
man improvisation. First of all there is the simple observation that music is lead-
ing both in critical research on improvisation and in constructing mechanical or 
digital improvisers (Lewis, 2016). Dance and theater, though having compara-
ble artistic traditions, either are harder to translate into algorithms – or simply 
have less closeness to academic research or technical thinking. Music certainly 
has some overlaps with mathematics, which is much less the case in other disci-
plines.  

This raises the question if the cognitive processes of improvisation are more 
or less the same over the disciplines. Is there a universal model of improvisation-
al cognition underlying all forms of improvisation? This paper strives to describe 



Gunter Lösel                                                             Can Robots Improvise?	

	 203 

an ‘improvisational mode of cognition’, which differs from everyday cognition in 
specific ways: 

1. The habitual evaluation of perceived input is turned off. Instead, impro-
visational cognition seems to apply a form of very subtle pattern detection, 
sometimes refered to as ‘listening for patterns’ or ‘listening to games’. Episodic 
memory might not be needed for this. 

2. Anticipation and prediction of the ‘circle of expectations’ might be crucial 
within the improvisational mode of cognition. Current research suggests that 
this is an automatic function of the human brain (Clark, 2016). It enables the 
improvisers to act without having comprehensive information.  

3. There is a continuous effort to find common ground in communication. 
This does not necessarily mean to build up shared mental models of the world. 
Instead, marking the other’s input as accepted will lead to the emergence of 
frames, games, codes and fictional worlds. Simply copying and slightly varying 
the partner’s input will lead to surprising results, if the environment has the right 
feedback qualities. 

4. Improvisational cognition will always introduce something new to the in-
teraction. This does not necessarily imply creativity, since impulses can go 
through a quasi-evolutionary process, that will generate new, unpredictable 
material through emergence, or decay, or selection, or chance. 

5. It seems useful to distinguish between cognition in the phase of game-
building and cognition in the phase of game-breaking. This confirms an early 
cognitive model introduced by Jeffrey Pressing in 1984 (Pressing, 1984). 

6. All in all a cognitive theory of improvisation has to integrate an environ-
mental view, following concepts of embodied cognition and social interaction. 
The improvisational environment will encourage ‘mistakes’ and will lead to an 
emerging code for the selection of contributions. Only within this environment 
will improvisational cognition lead to meaningful results. 

When I started this exploration I was secretly hoping to prove that improv-
isation is reserved to human beings. I tended to think of improvisation as being 
the peak of humanism, impossible to master for machines. But studying impro-
vising automata that already exist, leads to a different conclusion, suggesting 
that the problem of machine creativity appears much smaller, when we demysti-
fy creativity in the light of improvisation: Improvisation is an artistic process, 
that does not need an artist. Improvisation can do without authorship, without 
intentionality and, in some sense, even without creativity. It does not rely on 
clever or original ideas, but on the contrary trusts in the emergence of new ma-
terial from very small units of interaction. While maybe not being creative them-
selves, machines already seem to be quite capable in inspiring human partners to 
be creative, so they are already successfully part of the improvisational environ-
ment. Instead of thinking of improvisation as almost impossible for computers I 
now think that it might be one of the first areas where an artistic communication 
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between humans and autonomous digital agents will be possible. And machines 
will learn a lot in this communication.  
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